An Improved Pseudorandom Generator Based on Hardness of Factoring

نویسندگان

  • Nenad Dedic
  • Leonid Reyzin
  • Salil P. Vadhan
چکیده

We present a simple to implement and efficient pseudorandom generator based on the factoring assumption. It outputs more than pn/2 pseudorandom bits per p exponentiations, each with the same base and an exponent shorter than n/2 bits. Our generator is based on results by H̊astad, Schrift and Shamir [HSS93], but unlike their generator and its improvement by Goldreich and Rosen [GR00], it does not use hashing or extractors, and is thus simpler and somewhat more efficient. In addition, we present a general technique that can be used to speed up pseudorandom generators based on iterating one-way permutations. We construct our generator by applying this technique to results of [HSS93]. We also show how the generator given by Gennaro [Gen00] can be simply derived from results of Patel and Sundaram [PS98] using our technique.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Concrete Security of the Blum-Blum-Shub Pseudorandom Generator

The asymptotic security of the Blum-Blum-Shub (BBS) pseudorandom generator has been studied by Alexi et al. and Vazirani and Vazirani, who proved independently that O(log log N) bits can be extracted on each iteration, where N is the modulus (a Blum integer). The concrete security of this generator has been analyzed previously by Fischlin and Schnorr and by Knuth. In this paper we continue to a...

متن کامل

Pseudorandom Functions and Factoring

Factoring integers is the most established problem on which cryptographic primitives are based. This work presents an e cient construction of pseudorandom functions whose security is based on the intractability of factoring. In particular, we are able to construct e cient lengthpreserving pseudorandom functions where each evaluation requires only a constant number of modular multiplications per...

متن کامل

Bootstrapping Obfuscators via Fast Pseudorandom Functions

We show that it is possible to upgrade an obfuscator for a weak complexity class WEAK into an obfuscator for arbitrary polynomial size circuits, assuming that the class WEAK can compute pseudorandom functions. Specifically, under standard intractability assumptions (e.g., hardness of factoring, Decisional Diffie-Hellman, or Learning with Errors), the existence of obfuscators for NC or even TC i...

متن کامل

Extractors and Pseudorandom generators using the hard core lemma

We present a construction of an extractor based exclusively on hardness amplification which extracts from sources with (some) polynomially small min-entropy. This improves upon a similar construction of the author with Trevisan ([DT09]) both in terms of the entropy rate and seed length. The extractor in [DT09] could extract from N -bit sources with entropy γN (for γ > 0) using a seed of length ...

متن کامل

On the Provable Security of an Efficient RSA-Based Pseudorandom Generator

Pseudorandom Generators (PRGs) based on the RSA inversion (one-wayness) problem have been extensively studied in the literature over the last 25 years. These generators have the attractive feature of provable pseudorandomness security assuming the hardness of the RSA inversion problem. However, despite extensive study, the most efficient provably secure RSA-based generators output asymptoticall...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2002  شماره 

صفحات  -

تاریخ انتشار 2002